Lion’s mane lets neurons grow

More Details

19.02.2018  /  Scienceandmore  /  Category: Human Biology

Lion’s mane (scientifically Hericium erinaceus) is an edible mushroom that has been used in traditional Chinese medicine for a long time. In recent years, this white, globular-shaped and rotund mushroom has been investigated for its beneficial effects on humans, especially for its neuron growth promoting effects in the brain (neurogenesis).

Could it be that lion’s mane has an actual effect on neuron growth, or is it just another disappointing “miracle drug” and temporary hype?

brain mycelium

Biochemical analysis of lion’s mane mushroom found a wide variety of bioactive compounds, but two compounds in particular caught the attention of researchers: hericenones and erinacines. Both compounds have been shown to induce Nerve Growth Factors (NGFs) biosynthesis in nerve cells. NGFs activate cell differentiation and promote growth of neurons, as well as re-myelination of neurons. Myelin is an essential component of neurons and crucial for their function (1).

NGF belongs to the protein family of neurotrophins. Research data strongly suggests that neurotrophins are essential factors for the survival and differentiation of nerve cells. Decreased production of neurotrophins seems to be involved in the development of neurodegenerative diseases.

Neurotrophins would have been interesting compounds in treating neurodegenerative diseases, however, their high molecular weight prevents them from crossing the blood-brain barrier, and thus reaching the brain. The NGF-inducing hericenones and erinacines in lion’s mane mushrooms, on the other hand, seem to cross the blood brain barrier, and thus induce growth of neurons in the brain (2).

Investigations in cell cultures showed increased expression of genes that are associated with NGF synthesis upon administration of several erinacines from lion’s mane mushrooms. It was found that these compounds potentiate NGF-induced outgrowth from neurons. This added to the perception that lion’s mane mushroom affects survival and differentiation in nerve cells and displays anti-dementia activity. Therefore, intake of lion’s mane mushroom could potentially reduce the risk of developing neurodegenerative diseases (2).

In a study with rats, erinacine administration resulted in an upregulation of NGF in two brain areas, the locus caeruleus and the hippocampus. These brain areas are usually affected in patients with dementia and Alzheimer’s disease. In accordance with these results, erinacine administration in mice that exhibit symptoms equal to Alzheimer’s and Parkinson’s disease ameliorated the symptoms of both diseases (2,3,4).

Mice with impaired learning and memory that were fed lion’s mane mushrooms performed better in a memory test compared to mice that were not given the mushroom. The mice also regained a sense of curiosity and spend more time exploring novel objects. These results indicate that lion’s mane mushroom administration improves cognitive impairments and could be utilised in the treatment of cognitive dysfunctions such as Alzheimer’s disease (5).

In a 23 days study, mice were injected with a compound called amyloid ß peptide directly into the fluid in the brain which led to impaired learning and memory in these mice, specifically impaired spatial short-term and visual recognition memory. Administration of lion’s mane mushrooms, however, resulted in better performance in a memory test, accompanied by regaining a sense of curiosity in these memory-impaired mice. The mice spend more time exploring novel objects than mice that were not given lion’s mane mushroom. Examination of the mice brains revealed amyloid plaque formation similar to the one observed in Alzheimer’s patients. Amyloid plaques are involved in inflammation of brain tissue, impair neuron transmission, and associated with nerve degeneration. It is believed that amyloid plaque formation is a marker for Alzheimer’s disease. Overall, these results indicate that lion’s mane mushroom administration improves cognitive impairments linked to amyloid plaque formation. Lion’s mane mushroom could be utilised in the treatment of cognitive dysfunctions such as Alzheimer’s disease. However, lion’s mane represented 5 % of the whole mouse diet, which would translate to a substantial amount of daily human food intake. (5).

These results are promising, but, in fact, results obtained in the mouse model do not necessarily translate to humans. Fortunately, the effects of lion’s mane mushroom have also been studied in humans.

In a 16 weeks investigation with 30 Japanese men and women between the age of 50 to 80, who exhibited mild cognitive impairment, lion’s mane administration substantially improved their cognitive function. The men and women were tested at weeks 8, 12 and 16 and showed significantly higher scores in cognitive function tests than the control group. Crucially, the cognitive function increased with the duration of lion’s mane mushroom intake. The differences to the control group were greatest at week 16. During the investigation, the subjects were given 250 mg of lion’s mane mushroom daily. However, the beneficial effects decreased after the administration of lion’s mane mushroom was discontinued. The researchers thus concluded that a continuous intake is necessary to maintain the beneficial effects on cognitive functions. The researchers speculated that the promotion of NGF synthesis by compounds in lion’s mane could contribute to the prevention or alleviation of Alzheimer’s disease (6).

An important point that should not be disregarded is the palatability of lion’s mane mushroom. Ingestion of the mushroom itself does not present a health risk even after long-term consumption. However, some people have reported mild troubles with digestion but not to the point where intake has to be discontinued (6).

Overall, the research results are promising, and lion’s mane could contribute to the prevention or at least mitigation of cognitive impairment diseases. With increasing age, everybody will eventually suffer from cognitive impairment in some sort. Maintaining cognitive faculties would enhance the personal quality of life as well as the community’s quality of life.

Another very interesting area for research would be the impact of lion’s mane mushroom on healthy individuals. Would the mushroom-derived promotion of NGF synthesis actually improve cognitive functions? It is hard to speculate on the impact and further investigations are necessary to draw conclusions.


1. Lai PL, Naidu M, Sabaratnam V, Wong KH, David RP, Kuppusamy UR, Abdullah N, Malek SN. (2013) Neurotrophic properties of the Lion’s mane medicinal mushroom, Hericium erinaceus (Higher Basidiomycetes) from Malaysia. Int J Med Mushrooms. 15(6):539-54.

2. Zhang, C.-C., Cao, C.-Y., Kubo, M., Harada, K., Yan, X.-T., Fukuyama, Y., & Gao, J.-M. (2017). Chemical Constituents from Hericium erinaceus Promote Neuronal Survival and Potentiate Neurite Outgrowth via the TrkA/Erk1/2 Pathway. International Journal of Molecular Sciences, 18(8), 1659.

3. Tsai-Teng, T., Chin-Chu, C., Li-Ya, L., Wan-Ping, C., Chung-Kuang, L., Chien-Chang, S., Chi-Ying, H.F., Chien-Chih, C., Shiao, Y.J. (2016) Erinacine A-enriched Hericium erinaceus mycelium ameliorates Alzheimer’s disease-related pathologies in APPswe/PS1dE9 transgenic mice. J. Biomed. Sci. 23(1):49.

4. Kuo, H.C., Lu, C.C., Shen, C.H., Tung, S.Y., Hsieh, M.C., Lee, K.C., Lee, L.Y., Chen, C.C., Teng, C.C., Huang, W.S., et al. (2016) Hericium erinaceus mycelium and its isolated erinacine A protection from MPTP-induced neurotoxicity through the ER stress, triggering an apoptosis cascade. J. Transl. Med. 14:78.

5. Mori, K., Obara, Y., Moriya, T., Inatomi, S., Nakahata, N. (2011) Effects of Hericium erinaceus on amyloid β(25-35) peptide-induced learning and memory deficits in mice. Biomed. Res. 32(1):67-72.

6. Mori K, Inatomi S, Ouchi K, Azumi Y, Tuchida T. (2009) Improving effects of the mushroom Yamabushitake (Hericium erinaceus) on mild cognitive impairment: a double-blind placebo-controlled clinical trial. Phytother Res. 23(3):367-72.



  1. Carol Drali says:

    I was diagnosed with multiple sclerosis 1 month after I turned 50. My Grand-mum was 96 and had it since she was in her 20s. I was on Copaxone, the first year was daily and later I was on 40 mg, 3 times a week. It made a tremendous difference for me. Although the fatigue was what really gets to me. When I do too much, I do start to feel weak.There has been little if any progress in finding a cure or reliable treatment. My multiple sclerosis got significantly worse and unbearable because of my cognitive thinking.. Last year, i started on a natural multiple sclerosis Herbal therapy from Green House Herbal Clinic, i read a lot of positive reviews from patients who used the treatment and i immediately started on it. I had great relief with this herbal treatment. I am doing very much better now, no case of Cognitive thinking or memory Loss,, my multiple sclerosis condition is totally reversed. Visit Green House Herbal Clinic website w ww. greenhouseherbalclinic .com. I am thankful to nature, the medics failed. Share with friends!!

Post a comment